User Tools

Site Tools


data-analysis

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
data-analysis [2023/04/15 12:21] – [VisiData] dblumedata-analysis [2024/05/06 22:22] (current) – Added mention of set term block braille dblume
Line 25: Line 25:
 Here's an example command given the following two files, data.csv and gnuplot_instructions.gpi Here's an example command given the following two files, data.csv and gnuplot_instructions.gpi
  
-  gnuplot -e "f='data.csv'; t='Rating'" gnuplot_instructions.gpi+  gnuplot -e "f='data.csv'" gnuplot_instructions.gpi
  
 <file csv data.csv> <file csv data.csv>
 +date,col1,col2
 1992-01-01,5,14 1992-01-01,5,14
 1992-02-01,4,15 1992-02-01,4,15
Line 42: Line 43:
 # #
 set term dumb `tput cols` `tput lines`*9/10 set term dumb `tput cols` `tput lines`*9/10
 +# Or, if you have gnuplot 6.0 and are using Deja Vu font, then...
 +#set term block braille size `tput cols`,`tput lines`*9/10
  
 # #
Line 58: Line 61:
 set xdata time set xdata time
 set xlabel 'Date' set xlabel 'Date'
-set ylabel 'Value'+set xtics "1992-01-01", 2629746  # start, increment in seconds 
 +#set ylabel 'Value'
  
 # #
Line 70: Line 74:
 # #
 set datafile sep ',' set datafile sep ','
 +set key autotitle columnhead  # use the first line as title
 +firstrow = system('head -1 '.f. ' | tr "_," " "')
 +set xlabel word(firstrow, 1)
 +set ylabel word(firstrow, 2)
  
 # #
Line 77: Line 85:
 # #
 #plot f using 1:4 with lines, f using 1:3 with linespoints #plot f using 1:4 with lines, f using 1:3 with linespoints
-#plot f using 1:2 with lines title t, f using 1:3 with linespoints title 'Legend 2' +#plot f using 1:2 with lines, f using 1:3 with linespoints title 'Legend 2' 
-plot f using 1:2 with linespoints title t+plot f using 1:2 with linespoints 
 +</file> 
 + 
 +If you're making a "histogram" (actually a box chart with histogram style on X,Y points)... 
 +<file bash gnuplot_instructions.gpi> 
 +# Mostly the same as above, until... 
 + 
 +# Set your X axis format 
 +set style histogram clustered gap 1 
 +set style fill solid border -1
  
 +# Finally, plot with boxes
 +plot f using 1:2 with boxes
 </file> </file>
  
Line 91: Line 110:
         * NumPy: Fundamental, the other projects rely on it.         * NumPy: Fundamental, the other projects rely on it.
         * Matplotlib: Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy.         * Matplotlib: Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy.
 +    * Plotly: Generates interactive Javascript plots
  
 Here's [[https://github.com/Manishms18/Air-Passengers-Time-Series-Analysis/blob/master/Air_Passenger_with_explanations.ipynb|an example analysis of AirPassengers over time]]. Here's [[https://github.com/Manishms18/Air-Passengers-Time-Series-Analysis/blob/master/Air_Passenger_with_explanations.ipynb|an example analysis of AirPassengers over time]].
Line 111: Line 131:
  
 **Get this**. NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation. **Get this**. NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation.
 +
 +==== Plotly ====
 +
 +Undecided whether to use this. See [[https://towardsdatascience.com/matplotlib-vs-plotly-lets-decide-once-and-for-all-dc3eca9aa011|Matplotlib vs. Plotly: Let’s Decide Once and for All]]. Need to experiment. plotly.py is an interactive, open-source, and JavaScript-based graphing library for Python. Built on top of plotly.js, plotly.py is a high-level, declarative charting library that includes over 30 chart types, including scientific charts, 3D graphs, statistical charts, SVG maps, financial charts.
  
 ==== Matplotlib ==== ==== Matplotlib ====
Line 141: Line 165:
 # For ASCII on one full screen # For ASCII on one full screen
 #set term dumb `tput cols` `tput lines`*9/10 #set term dumb `tput cols` `tput lines`*9/10
 +
 +# If you have gnuplot 6.0 and are using Deja Vu font, then...
 +#set term block braille size `tput cols`,`tput lines`*9/10
  
 # For a PNG file. # For a PNG file.
Line 148: Line 175:
 set xdata time set xdata time
 set format x '%Y' set format x '%Y'
-set xlabel 'Year' +set key autotitle columnhead  # use the first line for titles in legend 
-set ylabel 'Passengers'+set xlabel 'Year'             # except for X, where we show Year not Month
 set datafile sep ',' set datafile sep ','
  
 # You can use: lines, points, linespoints # You can use: lines, points, linespoints
-plot 'AirPassengers.csv' using 1:2 with lines title 'Airline Passengers'+plot 'AirPassengers.csv' using 1:2 with lines
 </file> </file>
  
Line 160: Line 187:
 {{:general:airpassengers.png?400|}} {{:general:airpassengers.png?400|}}
  
-**Pros**: Fast and easy. Render to text or png pretty easily. +When you change ''term'' to dumb, then depending on your terminal size you get output like: 
-**Cons**: Not that pretty. GPI file takes some tweaking.+ 
 +<code> 
 +700 +-------------------------------------------------------------------------------+ 
 +    |      +          +      +          +      +          +      +          | 
 +    |                                                           #Passengers ******* | 
 +    |                                                                            *  | 
 +600 |-+                                                                          *+-| 
 +    |                                                                      *    * * | 
 +    |                                                                     **    * * | 
 +500 |-+                                                                 **    * *-| 
 +    |                                                              **    * *    * * | 
 +    |                                                        *     **    * *    * | 
 +    |                                                       * *    **    *  ***    *| 
 +400 |-+                                               **    * *    **     ***   +*| 
 +    |                                          *     * *    * *  **  * **         | 
 +    |                                          **    * *  *** *****  ***            | 
 +    |                                          **   **  ***    * *    *             | 
 +300 |-+                                  *     * ****   ***                       +-| 
 +    |                             **    * *  **  ***    *                           | 
 +    |                      **   ** *  *** ****    *                                 | 
 +200 |-+              *     **  *    ***    *                                      +-| 
 +    |         **  * * * ***  **     * *                                             | 
 +    |  **   ** * ***  **                                                            | 
 +    |*********  **      +      +          +      +          +      +          | 
 +100 +-------------------------------------------------------------------------------+ 
 +  1949   1950  1951   1952   1953  1954   1955   1956  1957   1958   1959  1960   1961 
 +                                          Year 
 +</code> 
 + 
 + 
 + 
 +**Pros**: Fast and easy. Render to text or png pretty easily. Sometimes better text renderings than VisiData
 +**Cons**: Not that pretty without customizations. GPI file takes some tweaking.
  
 ===== MatPlotLib ===== ===== MatPlotLib =====
data-analysis.1681586514.txt.gz · Last modified: 2023/04/15 12:21 by dblume